
CS 105 Fall 2024

Lecture 16: Virtual Memory



Multiprocessing: The Illusion

• Process provides each program with two key abstractions:
• Logical control flow

• Each program seems to have exclusive use of the CPU

• Provided by kernel mechanism called context switching

• Private address space

• Each program seems to have exclusive use of main memory. 

• Provided by kernel mechanism called virtual memory
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Multiprocessing: The Reality

• Computer runs many processes simultaneously

• Running program “top” on Mac

• System has 123 processes, 5 of which are active

• Identified by Process ID (PID)



Virtual Memory Goals

• Isolation: don’t want different 
process states collided in 
physical memory

 

• Efficiency: want fast 
reads/writes to memory

• Sharing: want option to 
overlap for communication

• Utilization: want best use of 
limited resource

• Virtualization: want to create 
illusion of more resourcesCode
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Base-and-Bound
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Exercise 1: Base-and-Bound

Assume that you are currently executing a process P with 

Base 0x1234 and Bound 0x100. 

• What is the physical address that corresponds to the 

virtual address 0x47?

• What is the physical address that corresponds to the 

virtual address 0x123?

0x127b

invalid



Evaluating Base-and-Bound

• Isolation: don’t want different 
process states collided in 
physical memory

 

• Efficiency: want fast 
reads/writes to memory

• Sharing: want option to 
overlap for communication

• Utilization: want best use of 
limited resource

• Virtualization: want to create 
illusion of more resources



Segmentation
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Segmentation
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Exercise 2: Segmentation

Assume that you are currently executing a process P with 

the following segment table:

• What is the physical address that corresponds to the 

virtual address 0x001?

• What is the physical address that corresponds to the 

virtual address 0xD47?

Base Bound Access

0x4747 0x80 R,W

0x2424 0x40 R,W

0x0023 0x80 R,W

0x1000 0x200 R,X

00 0000000001 0x4748

11 0101000111 0x1147



Evaluating Segmentation

• Isolation: don’t want different 
process states collided in 
physical memory

 

• Efficiency: want fast 
reads/writes to memory

• Sharing: want option to 
overlap for communication

• Utilization: want best use of 
limited resource

• Virtualization: want to create 
illusion of more resources



vaddr = page_num<< log(page_size) + offset

paddr = frame_num<<log(page_size) + offset
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Paging
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Exercise 3: Paging

Assume that you are currently executing a process P with 

the following page table on a system with 16 byte pages:

• What is the physical address that corresponds to the 

virtual address 0x147?

• What is the physical address that corresponds to the 

virtual address 0x16E?

Frame Access

0x47 R,W

0xF4 R,W

NULL R,W

0x23 R,X

…
…

00010100 0111 0x237

00010110 1110 0xF4E
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0x16



Exercise 3: Paging

Assume that you are currently executing a process P with 

the following page table on a system with 16 byte pages:
Frame Access

0x47 R,W
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Memory as a Cache

• each page table entry has a 
valid bit

• for valid entries, frame 
indicates physical address of 
page in memory

• a page fault occurs when a 
program requests a page that 
is not currently in memory
• handled much like a cache miss

• evict another page in memory to 
make space (which one?)

• takes time to handle, so context 
switch
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Page 0x13

v Frame Access

0 0x47 R,W

0 NULL R,W

1 0x47 R,W

1 0xF1 R,X

Memory as a Cache

Assume that you are currently executing a process P with 

the following page table on a system with 16 byte pages:
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Thrashing

• working set is the collection of a pages a process requires 

in a given time interval

• if it doesn't fit in memory, program will thrash



Exercise 4: Paging

Assume that you are currently executing a process P with 

the following page table on a system with 256 byte pages:

• What is the physical address that corresponds to the 

virtual address 0xF947?

• What is the physical address that corresponds to the 

virtual address 0xF700?

• What is the physical address that corresponds to the 

virtual address 0xF813?

v Frame Access

1 0x47 R,W

1 0x24 R,W

0 NULL R,W

0 0x23 R,X

0xF8

0xF7

0xFA

0xF9

…
…

0xF9 0x47 0x2447

0xF7 0x00 page fault

0xF8 0x13 segfault



Evaluating Paging

• Isolation: don’t want different 
process states collided in 
physical memory

 

• Efficiency: want fast 
reads/writes to memory

• Sharing: want option to 
overlap for communication

• Utilization: want best use of 
limited resource

• Virtualization: want to create 
illusion of more resources
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