
CS 105 Fall 2024

Lecture 16: Virtual Memory



Multiprocessing: The Illusion

• Process provides each program with two key abstractions:
• Logical control flow

• Each program seems to have exclusive use of the CPU

• Provided by kernel mechanism called context switching

• Private address space

• Each program seems to have exclusive use of main memory. 

• Provided by kernel mechanism called virtual memory

CPU

Registers

Memory

Stack

Heap

Code

Data

CPU

Registers

Memory

Stack

Heap

Code

Data …

CPU

Registers

Memory

Stack

Heap

Code

Data



Multiprocessing: The Reality

• Computer runs many processes simultaneously

• Running program “top” on Mac

• System has 123 processes, 5 of which are active

• Identified by Process ID (PID)



Virtual Memory Goals

• Isolation: don’t want different 
process states collided in 
physical memory

 

• Efficiency: want fast 
reads/writes to memory

• Sharing: want option to 
overlap for communication

• Utilization: want best use of 
limited resource

• Virtualization: want to create 
illusion of more resourcesCode

Data

Stack

Heap



Address Translation

MMU
Virtual Address invalid

Exception
P

h
y
s
ic

a
l A

d
d
re

s
s

Data

Code

Data

Stack

Heap



Base-and-Bound

Code
Data

Stack

Heap

Physical Memory

Virtual Memory

Base

B
o
u

n
d



Base-and-Bound

vaddr vaddr > Bound
Exception

Data

paddr = vaddr + Base

Code

Data

Stack

Heap

MMU

Base Bound



Exercise 1: Base-and-Bound

Assume that you are currently executing a process P with 

Base 0x1234 and Bound 0x100. 

• What is the physical address that corresponds to the 

virtual address 0x47?

• What is the physical address that corresponds to the 

virtual address 0x123?

0x127b

invalid



Evaluating Base-and-Bound

• Isolation: don’t want different 
process states collided in 
physical memory

 

• Efficiency: want fast 
reads/writes to memory

• Sharing: want option to 
overlap for communication

• Utilization: want best use of 
limited resource

• Virtualization: want to create 
illusion of more resources



Segmentation

Code
Data

Stack

Heap

Physical Memory

Virtual Memory

CBase

SBound

CBound

SBase

HBase
HBound

DBase
DBound



Segmentation

vaddr

offset > Bound[idx]

or access not allowed

E
x
c
e
p

tio
n

Data

paddr = Base[idx] + offset

Code

Data

Stack

Heap

MMU

Base Bound Access

R,W

R,W

R,W

R,X

idx offset



Exercise 2: Segmentation

Assume that you are currently executing a process P with 

the following segment table:

• What is the physical address that corresponds to the 

virtual address 0x001?

• What is the physical address that corresponds to the 

virtual address 0xD47?

Base Bound Access

0x4747 0x80 R,W

0x2424 0x40 R,W

0x0023 0x80 R,W

0x1000 0x200 R,X

00 0000000001 0x4748

11 0101000111 0x1147



Evaluating Segmentation

• Isolation: don’t want different 
process states collided in 
physical memory

 

• Efficiency: want fast 
reads/writes to memory

• Sharing: want option to 
overlap for communication

• Utilization: want best use of 
limited resource

• Virtualization: want to create 
illusion of more resources



vaddr = page_num<< log(page_size) + offset

paddr = frame_num<<log(page_size) + offset

Paging

Code
Data

Stack

Heap

Physical Memory

Virtual Memory

Frame 0

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Frame 6

Frame 7

Frame 8

Frame 9

Frame 10

Frame 11

Frame 12

Frame 13

Frame 14

Frame 15

Frame 16

Frame 17

Page 0

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6

Page 7

vaddr = page_num*page_size + offset

paddr = frame_num*frame_size + offset



Paging

vaddr
access not allowed

E
x
c
e
p

tio
n

Data

paddr =

Code

Data

Stack

Heap

MMU

Frame Access

47 R,W

NULL R,W

13 R,W

42 R,X

page# offset

Frame[page#] offset

…



Exercise 3: Paging

Assume that you are currently executing a process P with 

the following page table on a system with 16 byte pages:

• What is the physical address that corresponds to the 

virtual address 0x147?

• What is the physical address that corresponds to the 

virtual address 0x16E?

Frame Access

0x47 R,W

0xF4 R,W

NULL R,W

0x23 R,X

…
…

00010100 0111 0x237

00010110 1110 0xF4E

0x15

0x14

0x17

0x16



Exercise 3: Paging

Assume that you are currently executing a process P with 

the following page table on a system with 16 byte pages:
Frame Access

0x47 R,W

0xF4 R,W

NULL R,W

0x23 R,X

…
…

Frame 0x22

Frame 0x23

Frame 0x24

Frame 0x25

Frame 0x45

Frame 0x46

Frame0x47

Frame 0x48

Frame 0xF0

Frame 0xF1

Frame 0xF2

Frame 0xF3

Frame 0xF4

Frame 0xF5

…
…Page 0x14

Page 0x15

Page 0x16

Page 0x17

0x15

0x14

0x17

0x16

Physical Memory

Virtual Memory

Page 0x14

Page 0x17

Page 0x16



Memory as a Cache

• each page table entry has a 
valid bit

• for valid entries, frame 
indicates physical address of 
page in memory

• a page fault occurs when a 
program requests a page that 
is not currently in memory
• handled much like a cache miss

• evict another page in memory to 
make space (which one?)

• takes time to handle, so context 
switch

MMU

…

v Frame Access

1 0x47 R,W

0 NULL R,W

0 0x13 R,W

1 0xF1 R,X



Page 0x13

v Frame Access

0 0x47 R,W

0 NULL R,W

1 0x47 R,W

1 0xF1 R,X

Memory as a Cache

Assume that you are currently executing a process P with 

the following page table on a system with 16 byte pages:

…
…

Frame 0x10

Frame 0x11

Frame 0x12

Frame 0x13

Frame 0x45

Frame 0x46

Frame 0x47

Frame 0x48

Frame 0xF0

Frame 0xF1

Frame 0xF2

Frame 0xF3

Frame 0xF4

Frame 0xF5

…
…Page 0x14

Page 0x15

Page 0x16

Page 0x17

0x15

0x14

0x17

0x16

Physical Memory

Virtual Memory

Page 0x2F

Page 0x17

Page 0x14

v Frame Access

1 0x47 R,W

0 NULL R,W

0 0x13 R,W

1 0xF1 R,X

disk



Thrashing

• working set is the collection of a pages a process requires 

in a given time interval

• if it doesn't fit in memory, program will thrash



Exercise 4: Paging

Assume that you are currently executing a process P with 

the following page table on a system with 256 byte pages:

• What is the physical address that corresponds to the 

virtual address 0xF947?

• What is the physical address that corresponds to the 

virtual address 0xF700?

• What is the physical address that corresponds to the 

virtual address 0xF813?

v Frame Access

1 0x47 R,W

1 0x24 R,W

0 NULL R,W

0 0x23 R,X

0xF8

0xF7

0xFA

0xF9

…
…

0xF9 0x47 0x2447

0xF7 0x00 page fault

0xF8 0x13 segfault



Evaluating Paging

• Isolation: don’t want different 
process states collided in 
physical memory

 

• Efficiency: want fast 
reads/writes to memory

• Sharing: want option to 
overlap for communication

• Utilization: want best use of 
limited resource

• Virtualization: want to create 
illusion of more resources


	Slide 1: Lecture 16: Virtual Memory
	Slide 2: Multiprocessing: The Illusion
	Slide 3: Multiprocessing: The Reality
	Slide 4: Virtual Memory Goals
	Slide 5: Address Translation
	Slide 6: Base-and-Bound
	Slide 7: Base-and-Bound
	Slide 8: Exercise 1: Base-and-Bound
	Slide 9: Evaluating Base-and-Bound
	Slide 10: Segmentation
	Slide 11: Segmentation
	Slide 12: Exercise 2: Segmentation
	Slide 13: Evaluating Segmentation
	Slide 14: Paging
	Slide 15: Paging
	Slide 16: Exercise 3: Paging
	Slide 17: Exercise 3: Paging
	Slide 18: Memory as a Cache
	Slide 19: Memory as a Cache
	Slide 21: Thrashing
	Slide 22: Exercise 4: Paging
	Slide 23: Evaluating Paging

