
CS 105 Fall 2024

Lecture 15: OS and Processes

Intro to Operating Systems

• the operating system is a piece of software that manages

a computer's resources for its users and their applications

• Examples: OSX, Windows, Ubuntu, iOS, Android, Chrome OS

• OS is divided into two pieces: user-mode and kernel-mode

• core OS functionality is implemented by the OS kernel

• resource allocation

• isolation

• communication

• access control

• multiprocessing

• virtual memory

• reliable networking

• virtual machines

• user interface

• file I/O

• device management

• process control

Operating System Modes

Kernel Mode

• unrestricted access to

hardware

• mediates all hardware

access (access control)

• can execute privileged

instructions

User Mode

• must ask kernel to access hw

(system call)

• attempts to execute privileged

instructions cause exceptions

• Operating system mode is set in hardware, can't be changed

by user-level code

Processes

• A program is a file containing code + data that describes

a computation

• A process is an instance of a running program.

• One of the most profound ideas in computer science

• Not the same as “program” or “processor”

CPU

Registers

Memory

Stack

Heap

Code

Data

Linux Process Hierarchy

GrandchildGrandchild

Daemon
e.g. httpd

[0]

init [1]

ChildChild Child

Login shell Login shell
…

Note: you can view the
hierarchy using the Linux
pstree command

each process has a unique
process id (pid)

Creating Processes

• Parent process creates a new running child process by calling
fork

• int fork(void)

• Returns 0 to the child process, child’s PID to parent process

• Child is almost identical to parent:

• Child get an identical (but separate) copy of the parent’s virtual address space.

• Child gets identical copies of the parent’s open file descriptors

• Child has a different PID than the parent

• fork is interesting (and often confusing) because

it is called once but returns twice

fork Example
int main(){

pid_t id;
int x = 1;

id = fork();
 if (id == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 return 0;
 }

/* Parent */
 printf("parent: x=%d\n", --x);
 return 0;
}

 Call once, return twice

 Duplicate but separate
address space
▪ x has a value of 1 when

fork returns in parent and
child

▪ Subsequent changes to x
are independent

 Shared open files
▪ stdout is the same in

both parent and child

id=0

printf

printf

main fork

x=1 id=52
Original Process (pid:47)

Child Process (pid: 52)
, x=2

, x=0

child: x=2

parent: x=0

execve: Loading and Running Programs

• int execve(char *filename, char *argv[], char *envp[])

• Loads and runs in the current process:

• Executable file filename

• Can be object file or script file beginning with #!interpreter
(e.g., #!/bin/bash)

• …with argument list argv

• By convention argv[0]==filename

• …and environment variable list envp

• “name=value” strings (e.g., USER=droh)

• getenv, putenv, printenv

• Overwrites code, data, and stack

• Retains PID, open files and signal context

• Called once and never returns

• …except if there is an error

execve Example
int main(int argc, char** argv){

 printf("0\n");
 pid_t id = fork();

 if(id == 0){ // if child
 execve("hello", NULL, NULL);
 } else { // if parent
 printf("1\n");
 }

 printf("2\n");
 return 0;
}

int main(int argc, char** argv){
 printf("Hello!\n");

 return 0;
}

fork
Parent (pid = 47)

Child (pid = 49)

printfmain

0

printf

1

printf

2

execve printf

hello

exec.c

hello.c

id=49

id=0

Multiprocessing

• Computer runs many processes simultaneously

• Running program “top” on Mac

• Identified by Process ID (PID)

Multiprocessing: The Illusion

• Process provides each program with two key abstractions:
• Logical control flow

• Each program seems to have exclusive use of the CPU

• Provided by kernel mechanism called context switching

• Private address space

• Each program seems to have exclusive use of main memory.

• Provided by kernel mechanism called virtual memory

CPU

Registers

Memory

Stack

Heap

Code

Data

CPU

Registers

Memory

Stack

Heap

Code

Data …

CPU

Registers

Memory

Stack

Heap

Code

Data

Multiprocessing: The (Traditional) Reality

• Single processor executes multiple processes concurrently

• Process executions interleaved (multitasking)

• Register values for nonexecuting processes saved in memory

• Address spaces managed by virtual memory system

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

Context Switching

• Processes are managed by a shared chunk of memory-

resident kernel code

• Important: the kernel code is not a separate process, but rather

code and data structures that the OS uses to manage all processes

• Control flow passes from one process to another via a

context switch
Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

Process Control Block (PCB)

• To implement a context switch, OS maintains a PCB for

each process containing:

• process table, which contains information about the process (id,

user, privilege level, arguments, status)

• location of executable on disk

• file table

• register values (general-purpose registers, float registers, pc,

eflags…)

• memory state

• scheduling information

 ... and more!

Memory

Multiprocessing: The (Traditional) Reality

CPU

Registers

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

1. Save current registers to memory (in PCB)

Memory

Multiprocessing: The (Traditional) Reality

CPU

Registers

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

1. Save current registers to memory (in PCB)

2. Schedule next process for execution

Memory

Multiprocessing: The (Traditional) Reality

CPU

Registers

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

1. Save current registers to memory (in PCB)

2. Schedule next process for execution

3. Load saved registers and switch address space

Multiprocessing: The (Modern) Reality

• Multicore processors
• Multiple CPUs on single chip

• Share main memory (and some of the caches)

• Each can execute a separate process
• Scheduling of processors onto cores done by kernel

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

CPU

Registers

Exercise: Context Switching

A hardware designer argues that there are now enough on-

chip transistors to build a CPU with 1024 integer registers

and 512 floating point registers. As a result, the compiler

should almost never need to store anything on the stack.

As a new operating systems expert, would you recommend

building this new design.

Process Life Cycle

Init

Runnable Running

fork

scheduled

interrupt, yield

• An exception is a transfer of control to the OS kernel in

response to some event (i.e., change in processor state)

User code Kernel code

Exception
Exception processing
by exception handler

• Return to I_current
• Return to I_next
• Abort

Event I_current
I_next

Exceptions

0
1

2
...

n-1

Exception Tables

• Each type of event has a

unique exception number k

• k = index into exception table

(a.k.a. interrupt vector)

• Handler k is called each time

exception k occurs

Exception
Table

Code for
exception handler 0

Code for
exception handler 1

Code for
exception handler 2

Code for
exception handler n-1

...

Exception
numbers

Synchronous Exceptions

Caused by events that occur as a result of executing an
instruction:

• Traps

• Intentional

• Examples: system calls, breakpoint traps, special instructions

• Returns control to “next” instruction

• Faults

• Unintentional but possibly recoverable

• Examples: page faults (recoverable), protection faults (unrecoverable),
floating point exceptions

• Either re-executes faulting (“current”) instruction or aborts

• Aborts

• Unintentional and unrecoverable

• Examples: illegal instruction, divide-by-zero, parity error, machine check

• Aborts current program

Interrupts (Asynchronous Exceptions)

Caused by events external to the process

• Indicated by setting the processor’s interrupt pin

• Handler returns to “next” instruction

Examples:

• Timer interrupt

• Every few ms, an external timer chip triggers an interrupt

• Used by the kernel to take back control from user programs

• I/O interrupt from external device

• Hitting Ctrl-C at the keyboard

• Arrival of a packet from a network

• Arrival of data from a disk

fork Example
int main(){

pid_t pid;
int x = 1;

pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 return 0;
 }

/* Parent */
 printf("parent: x=%d\n", --x);
 return 0;
}

 Call once, return twice

 Duplicate but separate
address space
▪ x has a value of 1 when

fork returns in parent and
child

▪ Subsequent changes to x
are independent

 Shared open files
▪ stdout is the same in

both parent and child

 Concurrent execution

▪ Can’t predict execution
order of parent and child

x=2 2

main fork printf

printf

x=1 x=0 0
Parent

Child

Exercise: What are all the possible outputs of this program?

Modeling fork with Process Graphs

• A process graph is a useful tool for capturing the partial

ordering of statements in a concurrent program:

• Each vertex is the execution of a statement

• a -> b means a happens before b

• Edges can be labeled with current value of variables

• printf vertices can be labeled with output

• Each graph begins with a vertex with no inedges

• Any topological sort of the graph corresponds to a

feasible total ordering.

• Total ordering of vertices where all edges point from left to right

Interpreting Process Graphs

• Original graph:

• Relabeled graph:

a b c

e
a b e c

Feasible total ordering:

a e cb

Infeasible total ordering:

x=2 2

main fork printf

printf

x=1 x=0 0
Parent

Child

fork Example: Two consecutive forks

void fork1()
{

printf("L0\n");
fork();
printf("L1\n");
fork();

 printf("Bye\n");
} printf printf fork

printf

printffork

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

Which of these outputs are feasible? L0
L1
Bye
Bye
L1
Bye
Bye

L0
Bye
L1
Bye
L1
Bye
Bye

Exercise: Forks and Feasible Schedules

• For each of the following programs, draw the process

graph and then determine which of the possible outputs

are feasible

void fork2(){
printf("L0\n");

 if (fork() != 0) {
printf("L1\n");

 if (fork() != 0) {
printf("L2\n");

}
}

 printf("Bye\n");
}

void fork3(){
printf("L0\n");

 if (fork() == 0) {
printf("L1\n");

 if (fork() == 0) {
printf("L2\n");

}
}

 printf("Bye\n");
}

L0
L1
Bye
Bye
L2
Bye

L0
Bye
L1
Bye
Bye
L2

L0
Bye
L1
L2
Bye
Bye

L0
Bye
L1
Bye
Bye
L2

Process Life Cycle

Init

Runnable Running

Stopped

fork

scheduled

interrupt, yield

wait, I/O operation
process or

I/O completion

Reaping Children

• Reaping

• Performed by parent on terminated child (using wait or waitpid)

• Parent is given exit status information

• Kernel then deletes zombie child process

• int wait(int* child_status)

• Suspends current process until any one of its children terminates

• Return value is the pid of the child process that terminated

• If child_status != NULL, then the integer it points to will be set to a

value that indicates reason the child terminated and the exit status

• int waitpid(pid_t pid, int* child_status, int opt)

• Suspends current process child with pid terminates

wait Example
void fork6() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 exit(0);

} else {
printf("HP: hello from parent\n");
wait(&child_status);
printf("CT: child has terminated\n");

}
 printf("Bye\n");
}

printf wait printffork

printf

exit

HP

HC

CT

Bye

Feasible output:
HC
HP
CT
Bye

Infeasible output:
HP
CT
Bye
HC

Reaping Children

• What if parent doesn’t reap?

• If any parent terminates without reaping a child, then the orphaned
child will be reaped by init process (pid == 1)

• So, only need explicit reaping in long-running processes

• e.g., shells and servers

Process Life Cycle

Init

Runnable Running

Terminated

Stopped

fork

scheduled

interrupt, yield

return from main,

exit, terminated

wait, I/O operation
process or

I/O completion

Terminating Processes

• Process becomes terminated for one of three reasons:

• Returning from the main routine

• Calling the exit function

• Receiving a signal whose default action is to terminate

• void exit(int status)

• Terminates with an exit status of status

• Convention: normal return status is 0, nonzero on error

• Another way to explicitly set the exit status is to return an integer value
from the main routine

• exit is called once but never returns.

	Slide 1: Lecture 15: OS and Processes
	Slide 2: Intro to Operating Systems
	Slide 3: Operating System Modes
	Slide 5: Processes
	Slide 6: Linux Process Hierarchy
	Slide 8: Creating Processes
	Slide 9: fork Example
	Slide 10: execve: Loading and Running Programs
	Slide 11: execve Example
	Slide 12: Multiprocessing
	Slide 13: Multiprocessing: The Illusion
	Slide 14: Multiprocessing: The (Traditional) Reality
	Slide 15: Context Switching
	Slide 16: Process Control Block (PCB)
	Slide 17: Multiprocessing: The (Traditional) Reality
	Slide 18: Multiprocessing: The (Traditional) Reality
	Slide 19: Multiprocessing: The (Traditional) Reality
	Slide 20: Multiprocessing: The (Modern) Reality
	Slide 21: Exercise: Context Switching
	Slide 22: Process Life Cycle
	Slide 23: Exceptions
	Slide 24: Exception Tables
	Slide 25: Synchronous Exceptions
	Slide 26: Interrupts (Asynchronous Exceptions)
	Slide 27: fork Example
	Slide 28: Modeling fork with Process Graphs
	Slide 29: Interpreting Process Graphs
	Slide 30: fork Example: Two consecutive forks
	Slide 31: Exercise: Forks and Feasible Schedules
	Slide 32: Process Life Cycle
	Slide 33: Reaping Children
	Slide 34: wait Example
	Slide 35: Reaping Children
	Slide 36: Process Life Cycle
	Slide 37: Terminating Processes

