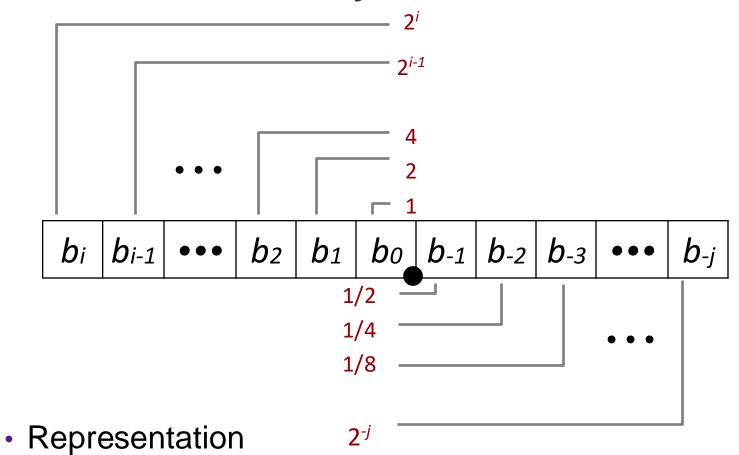
Lecture 3: Floats

CS 105 Fall 2024

Review: Representing Integers

unsigned: 128 (2⁷) $64(2^6)$ 32 (2⁵) 16 (2⁴) 8 (2³) 4 (2²) 2 (2¹) $1(2^0)$ signed (two's complement): 4 (2²) -128 (2⁷) $64(2^6)$ 32 (2⁵) 16 (2⁴) 8 (2³) 2 (2¹) $1(2^0)$

Fractional binary numbers



- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number: $\sum_{k=-j}^{i} (b_k \cdot 2^k)$

Example: Fractional Binary Numbers

What is 1001.101₂?

$$= 8 + 1 + \frac{1}{2} + \frac{1}{8} = 9 \frac{5}{8} = 9.625$$

What is the binary representation of 13 9/16?

1101.1001

Exercise 1: Fractional Binary Numbers

- Translate the following fractional numbers to their binary representation
 - 5 3/4
 - · 27/8
 - · 17/16
- Translate the following fractional binary numbers to their decimal representation
 - .011
 - .11
 - · 1.1

Representable Numbers

- Limitation #1
 - Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations

```
   Value Representation
   1/3 0.01010101[01]...2
```

- 1/5 0.00110011[0011]...2
- 1/10 0.000110011[0011]...2

Limitation #2

- Just one setting of binary point within the w bits
- Limited range of numbers (very small values? very large?)

Floating Point Representation

- Numerical Form: $(-1)^s \cdot M \cdot 2^E$
 - Sign bit s determines whether number is negative or positive
 - Significand M normally a (binary) fractional value in range [1.0,2.0)
 - Exponent E weights value by power of two
- Examples:
 - 1.0
 - -1.25
 - 64
 - .625

Exercise 2: Floating Point Numbers

- For each of the following numbers, specify a bit s, binary fractional number M in [1.0,2.0) and a binary number E such that the number is equal to $(-1)^s \cdot M \cdot 2^E$
 - 5 3/4
 - · 27/8
 - · -1 1/2
 - · -3/4

Floating Point Representation

- Numerical Form: $(-1)^s \cdot M \cdot 2^E$
 - Sign bit s determines whether number is negative or positive
 - Significand M normally a fractional value in range [1.0,2.0)
 - Exponent E weights value by power of two

Encoding:

s
$$\exp = e_{k-1} \dots e_1 e_0$$
 frac $= f_{n-1} \dots f_1 f_0$

- s is sign bit s
- exp field encodes E (but is not equal to E)
 - normally $E = e_{k-1} \dots e_1 e_0 (2^{k-1} 1)$ bias
- frac field encodes M (but is not equal to M)
 - normally $M = 1. f_{n-1} ... f_1 f_0$

Float (32 bits):

- k = 8, n = 23
- bias = 127

Double (64 bits)

- k=11, n=52
- bias = 1023

Example: Floats

 What fractional number is represented by the bytes 0x3ec00000? Assume big-endian order.

s
$$\exp = e_{k-1} \dots e_1 e_0$$
 frac $= f_{n-1} \dots f_1 f_0$

- s is sign bit s
- exp field encodes E (but is not equal to E)
 - normally $E = e_{k-1} \dots e_1 e_0 (2^{k-1} 1)$
- frac field encodes M (but is not equal to M)
 - normally $M = 1. f_{n-1} ... f_1 f_0$

Float (32 bits):

- k = 8, n = 23
- bias = 127

$$(-1)^s \cdot M \cdot 2^E$$

0011 1110 1100 0000 0000 0000 0000 0000

$$(-1)^{0} \cdot 1.5_{10} \cdot 2^{-2} = 1 \cdot \frac{3}{2} \cdot \frac{1}{4} = \frac{3}{8} = .375_{10}$$
 $(-1)^{0} \cdot 1.1_{2} \cdot 2^{-2} = .011_{2} = \frac{1}{4} + \frac{1}{8} = .375_{10}$

Exercise 3: Floats

 What fractional number is represented by the bytes 0x423c0000? Assume big-endian order.

s
$$\exp = e_{k-1} \dots e_1 e_0$$
 frac $= f_{n-1} \dots f_1 f_0$

- s is sign bit s
- exp field encodes *E* (but is not equal to E)
 - normally $E = e_{k-1} \dots e_1 e_0 (2^{k-1} 1)$
- frac field encodes M (but is not equal to M)
 - normally $M = 1. f_{n-1} ... f_1 f_0$

Float (32 bits):

- k = 8, n = 23
- bias = 127

$$(-1)^s \cdot M \cdot 2^E$$

Limitation so far...

23-bits

 What is the smallest non-negative number that can be represented?

0000 0000 0000 0000 0000 0000 0000

$$s=0$$
 exp=0

$$s=0$$
 $E = -127$

$$(-1)^0 \cdot 1.0_2 \cdot 2^{-127} = 2^{-127}$$

Normalized and Denormalized

s exp frac

$$(-1)^s \cdot M \cdot 2^E$$

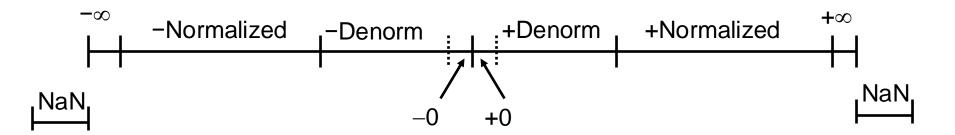
Normalized Values

- exp is neither all zeros nor all ones (normal case)
- exponent is defined as $E = e_{k-1} \dots e_1 e_0$ bias, where bias = $2^{k-1} 1$ (e.g., 127 for float or 1023 for double)
- significand is defined as $M = 1.f_{n-1}f_{n-2}...f_0$

Denormalized Values

- exp is either all zeros or all ones
- if all zeros: E = 1 bias and $M = 0. f_{n-1} f_{n-2} ... f_0$
- if all ones: infinity (if frac is all zeros) or NaN (if frac is non-zero)

Visualization: Floating Point Encodings



Exercise 4: Normalized and Denormalized

Write a C function to compute a floating point representation of 2^x by directly constructing the IEEE float representation of the result. When x is too small, return 0.0 When x is too large, return +∞

```
float fpwr2(int x){
unsigned exp, frac, u;
if(x < _____){ /* Too small */
  exp = ;
  frac = _____;
} else if (x <= ___){ /* Denormalized */ }
  exp = ____;
  frac = :
} else if (x <= ){ /* Normalized */ }
  exp = ;
  frac = _____;
                   /* Too big */
} else {
  exp = ;
  frac = _____;
u = exp << 23 | frac; /* pack exp, frac */
return u2f(u); /* return as float */
```

23-bits

Example: Limits of Floats

 What is the difference between the largest (non-infinite) positive number that can be represented as a (normalized) float and the second-largest?

0111 1111 0111 1111 1111 1111 1111

$$diff = 0.0000000000000000000001_2 \cdot 2^{127} = 1_2 \cdot 2^{127-23} = \mathbf{2^{104}}$$

Correctness

- Example 1: Is (x + y) + z = x + (y + z)?
 - Ints: Yes!
 - Floats:
 - (2^30 + -2^30) + 3.14 \infty 8.14

Floating Point Operations

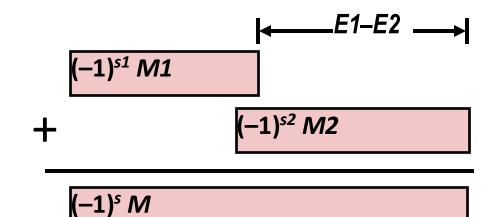
- All of the bitwise and logical operations still work
- Float arithmetic operations done by separate hardware unit (FPU)

Floating Point Addition

- Float operations done by separate hardware unit (FPU)
- $F_1 + F_2 = (-1)^{s_1} \cdot M_1 \cdot 2^{E_1} + (-1)^{s_1} \cdot M_1 \cdot 2^{E_1}$
 - Assume *E1* >= *E2*

Get binary points lined up

- Exact Result: $(-1)^s \cdot M \cdot 2^E$
 - Sign s, significand M:
 - Result of signed align & add
 - Exponent E: E1



- Fixing
 - If $M \ge 2$, shift M right, increment E
 - if M < 1, shift M left k positions, decrement E by k
 - Overflow if E out of range
 - Round M to fit frac precision

Floating Point Multiplication

- $F_1 \cdot F_2 = (-1)^{s_1} \cdot M_1 \cdot 2^{E_1} \cdot (-1)^{s_1} \cdot M_1 \cdot 2^{E_1}$
- Exact Result: $(-1)^s \cdot M \cdot 2^E$
 - Sign *s*: *s1* ^ *s2*
 - Significand M: M1 x M2
 - Exponent *E*: *E1* + *E2*
- Fixing
 - If M ≥ 2, shift M right, increment E
 - If E out of range, overflow
 - Round M to fit frac precision
- Implementation
 - Biggest chore is multiplying significands

Floating Point in C

- C Guarantees Two Levels
 - float single precision (32 bits)
 - double double precision (64 bits)
- Conversions/Casting
 - Casting between int, float, and double changes bit representation
 - double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - int \rightarrow double
 - Exact conversion,
 - int → float
 - Will round