
CS 105 Fall 2024

Lecture 3: Floats

Review: Representing Integers

• unsigned:

• signed (two's complement):

128 (27) 64 (26) 32 (25) 16 (24) 8 (23) 4 (22) 2 (21) 1 (20)

-128 (27) 64 (26) 32 (25) 16 (24) 8 (23) 4 (22) 2 (21) 1 (20)

2i

2i-1

4

2

1

1/2

1/4

1/8

2-j

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

• • •

• Representation

• Bits to right of “binary point” represent fractional powers of 2

• Represents rational number: σ𝑘=−𝑗
𝑖 (𝑏𝑘 ⋅ 2𝑘)

• • •

Fractional binary numbers

Example: Fractional Binary Numbers
• What is 1001.1012?

• What is the binary representation of 13 9/16?

= 𝟖 + 𝟏 +
𝟏

𝟐
+

𝟏

𝟖
= 𝟗

𝟓

𝟖
= 𝟗. 𝟔𝟐𝟓

1101. 1001

Exercise 1: Fractional Binary Numbers
• Translate the following fractional numbers to their binary

representation

• 5 3/4

• 2 7/8

• 1 7/16

• Translate the following fractional binary numbers to their

decimal representation

• .011

• .11

• 1.1

101.11

10.111

1.0111

.375

.75

1.5

Representable Numbers

• Limitation #1

• Can only exactly represent numbers of the form x/2k

• Other rational numbers have repeating bit representations

• Value Representation

• 1/3 0.0101010101[01]…2

• 1/5 0.001100110011[0011]…2

• 1/10 0.0001100110011[0011]…2

• Limitation #2

• Just one setting of binary point within the w bits

• Limited range of numbers (very small values? very large?)

• Numerical Form: −1 𝑠 ⋅ 𝑀 ⋅ 2𝐸

• Sign bit 𝑠 determines whether number is negative or positive

• Significand 𝑀 normally a (binary) fractional value in range [1.0,2.0)

• Exponent 𝐸 weights value by power of two

• Examples:

• 1.0

• -1.25

• 64

• .625

Floating Point Representation

−1 0 ⋅ 1.0 ⋅ 20 s = 0, M = 1.0, E = 0

−1 1 ⋅ 1.01 ⋅ 20 s = 1, M = 1.01, E = 0

−1 0 ⋅ 1.0 ⋅ 26 s = 0, M = 1.0, E = 6

−1 0 ⋅ 1.01 ⋅ 2−1 s = 0, M = 1.01, E = -1

1.0

-1.01

1000000

-0.101

Exercise 2: Floating Point Numbers
• For each of the following numbers, specify a bit s, binary

fractional number M in [1.0,2.0) and a binary number E

such that the number is equal to −1 𝑠 ⋅ 𝑀 ⋅ 2𝐸

• 5 3/4

• 2 7/8

• -1 1/2

• -3/4

101.11

10.111

-1.1

-0.11

s = 0, M = 1.0111, E = 2

s = 0, M = 1.0111, E = 1

s = 1, M = 1.1, E = 0

s = 1, M = 1.1, E = -1

• Numerical Form: −1 𝑠 ⋅ 𝑀 ⋅ 2𝐸

• Sign bit 𝑠 determines whether number is negative or positive

• Significand 𝑀 normally a fractional value in range [1.0,2.0)

• Exponent 𝐸 weights value by power of two

• Encoding:

• s is sign bit s

• exp field encodes 𝐸 (but is not equal to E)

• normally 𝐸 = 𝑒𝑘−1 … 𝑒1𝑒0 − (2𝑘−1 − 1)

• frac field encodes M (but is not equal to M)

• normally 𝑀 = 1. 𝑓𝑛−1 … 𝑓1𝑓0

Floating Point Representation

𝑠 exp = 𝑒𝑘−1 … 𝑒1𝑒0 frac = 𝑓𝑛−1 … 𝑓1𝑓0

bias

Float (32 bits):

• k = 8, n = 23

• bias = 127

Double (64 bits)

• k=11, n = 52
• bias = 1023

Example: Floats

• What fractional number is represented by the bytes

0x3ec00000? Assume big-endian order.

𝑠 exp = 𝑒𝑘−1 … 𝑒1𝑒0 frac = 𝑓𝑛−1 … 𝑓1𝑓0

Float (32 bits):

• k = 8, n = 23

• bias = 127

• s is sign bit s
• exp field encodes 𝐸 (but is not equal to E)

• normally 𝐸 = 𝑒𝑘−1 … 𝑒1𝑒0 − (2𝑘−1 − 1)
• frac field encodes M (but is not equal to M)

• normally 𝑀 = 1. 𝑓𝑛−1 … 𝑓1𝑓0

0011 1110 1100 0000 0000 0000 0000 0000

s=0 exp=125 frac = 100000000000000000000002

s=0 E = -2 M = 1.100000000000000000000002 = 1.510

−1 0 ⋅ 1.510 ⋅ 2−2 = 1 ⋅
3

2
⋅

1

4
=

3

8
= . 𝟑𝟕𝟓𝟏𝟎 −1 0 ⋅ 1.12 ⋅ 2−2 = .0112 =

1

4
+

1

8
= . 𝟑𝟕𝟓𝟏𝟎

−1 𝑠 ⋅ 𝑀 ⋅ 2𝐸

Exercise 3: Floats

• What fractional number is represented by the bytes

0x423c0000? Assume big-endian order.

𝑠 exp = 𝑒𝑘−1 … 𝑒1𝑒0 frac = 𝑓𝑛−1 … 𝑓1𝑓0

Float (32 bits):

• k = 8, n = 23

• bias = 127

• s is sign bit s
• exp field encodes 𝐸 (but is not equal to E)

• normally 𝐸 = 𝑒𝑘−1 … 𝑒1𝑒0 − (2𝑘−1 − 1)
• frac field encodes M (but is not equal to M)

• normally 𝑀 = 1. 𝑓𝑛−1 … 𝑓1𝑓0 −1 𝑠 ⋅ 𝑀 ⋅ 2𝐸

Limitation so far…

• What is the smallest non-negative number that can be

represented?

0000 0000 0000 0000 0000 0000 0000 0000

s=0 exp=0 frac = 000000000000000000000002

s=0 E = -127 M = 1.000000000000000000000002

−1 0 ⋅ 1.02 ⋅ 2−127 = 2−127

s exp frac

1 8-bits 23-bits

Normalized and Denormalized

−1 𝑠 ⋅ 𝑀 ⋅ 2𝐸

Normalized Values

• exp is neither all zeros nor all ones (normal case)

• exponent is defined as E = 𝑒𝑘−1 … 𝑒1𝑒0 − bias, where

bias = 2𝑘−1 − 1 (e.g., 127 for float or 1023 for double)

• significand is defined as 𝑀 = 1. 𝑓𝑛−1𝑓𝑛−2 … 𝑓0

• Denormalized Values

• exp is either all zeros or all ones

• if all zeros: E = 1 − bias and 𝑀 = 0. 𝑓𝑛−1𝑓𝑛−2 … 𝑓0

• if all ones: infinity (if frac is all zeros) or NaN (if frac is non-zero)

s exp frac

Visualization: Floating Point Encodings

+−

−0

+Denorm +Normalized−Denorm−Normalized

+0
NaN NaN

Exercise 4: Normalized and Denormalized

• Write a C function to

compute a floating point

representation of 2𝑥 by

directly constructing the

IEEE float representation

of the result. When x is too

small, return 0.0 When x is

too large, return +∞

float fpwr2(int x){

 unsigned exp, frac, u;

 if(x < _____________){ /* Too small */

 exp = ____________;

 frac = ___________;

 } else if (x <= ____){ /* Denormalized */

 exp = ____________;

 frac = ___________;

 } else if (x <= ____){ /* Normalized */

 exp = ____________;

 frac = ___________;

 } else { /* Too big */

 exp = ____________;

 frac = ___________;

 }

 u = exp << 23 | frac; /* pack exp, frac */

 return u2f(u); /* return as float */

}

s exp frac

1 8-bits 23-bits

0

0

-149

-127

0

1 << (x+149)

127

255

0

x+127

0

float fpwr2(int x){

 unsigned exp, frac, u;

 if(x < _____________){ /* Too small */

 exp = ____________;

 frac = ___________;

 } else if (x <= ____){ /* Denormalized */

 exp = ____________;

 frac = ___________;

 } else if (x <= ____){ /* Normalized */

 exp = ____________;

 frac = ___________;

 } else { /* Too big */

 exp = ____________;

 frac = ___________;

 }

 u = exp << 23 | frac; /* pack exp, frac */

 return u2f(u); /* return as float */

}

Example: Limits of Floats

• What is the difference between the largest (non-infinite)

positive number that can be represented as a

(normalized) float and the second-largest?

s exp frac

1 8-bits 23-bits

0111 1111 0111 1111 1111 1111 1111 1111

s=0 E = 127 M = 1.111111111111111111111112

largest = 1.111111111111111111111112 ⋅ 2127

second_largest = 1.111111111111111111111102 ⋅ 2127

diff = 0.000000000000000000000012 ⋅ 2127 = 12 ⋅ 2127−23 = 𝟐𝟏𝟎𝟒

• Example 1: Is (x + y) + z = x + (y + z)?

• Ints: Yes!

• Floats:

• (2^30 + -2^30) + 3.14 3.14

• 2^30 + (-2^30 + 3.14) 0.0

Correctness

Floating Point Operations

• All of the bitwise and logical operations still work

• Float arithmetic operations done by separate hardware

unit (FPU)

Floating Point Addition

• Float operations done by separate hardware unit (FPU)

• 𝐹1 + 𝐹2 = −1 𝑠1 ⋅ 𝑀1 ⋅ 2𝐸1 + −1 𝑠1 ⋅ 𝑀1 ⋅ 2𝐸1

• Assume E1 >= E2

• Exact Result: −1 𝑠 ⋅ 𝑀 ⋅ 2𝐸

• Sign s, significand M:

• Result of signed align & add

• Exponent E: E1

• Fixing
• If M ≥ 2, shift M right, increment E

• if M < 1, shift M left k positions, decrement E by k

• Overflow if E out of range

• Round M to fit frac precision

(–1)s1 M1

(–1)s2 M2

E1–E2

+

(–1)s M

Get binary points lined up

Floating Point Multiplication

• 𝐹1 ⋅ 𝐹2 = −1 𝑠1 ⋅ 𝑀1 ⋅ 2𝐸1 ⋅ −1 𝑠1 ⋅ 𝑀1 ⋅ 2𝐸1

• Exact Result: −1 𝑠 ⋅ 𝑀 ⋅ 2𝐸

• Sign s: s1 ^ s2

• Significand M: M1 x M2

• Exponent E: E1 + E2

• Fixing
• If M ≥ 2, shift M right, increment E

• If E out of range, overflow

• Round M to fit frac precision

• Implementation
• Biggest chore is multiplying significands

Floating Point in C

• C Guarantees Two Levels
• float single precision (32 bits)

• double double precision (64 bits)

• Conversions/Casting
• Casting between int, float, and double changes bit
representation

• double/float → int

• Truncates fractional part

• Like rounding toward zero

• Not defined when out of range or NaN: Generally sets to TMin

• int → double

• Exact conversion,

• int → float

• Will round

	Slide 1: Lecture 3: Floats
	Slide 2: Review: Representing Integers
	Slide 4: Fractional binary numbers
	Slide 5: Example: Fractional Binary Numbers
	Slide 6: Exercise 1: Fractional Binary Numbers
	Slide 7: Representable Numbers
	Slide 8: Floating Point Representation
	Slide 9: Exercise 2: Floating Point Numbers
	Slide 10: Floating Point Representation
	Slide 11: Example: Floats
	Slide 12: Exercise 3: Floats
	Slide 13: Limitation so far…
	Slide 14: Normalized and Denormalized
	Slide 15: Visualization: Floating Point Encodings
	Slide 16: Exercise 4: Normalized and Denormalized
	Slide 17: Example: Limits of Floats
	Slide 18: Correctness
	Slide 19: Floating Point Operations
	Slide 20: Floating Point Addition
	Slide 21: Floating Point Multiplication
	Slide 22: Floating Point in C

