
CS 105 Fall 2024

Lecture 2: Representing Integers

Review: Memory

• Memory is an array of bits

• A byte is a unit of eight bits

• An index into the array is an address,

location, or pointer

• Often expressed in hexadecimal

• We speak of the value in memory at

an address

• The value may be a single byte …

• … or a multi-byte quantity starting

at that address
1

0

1
0

0

0

1
1

0

1

1
0

1

1

0
0

0

1

1
1

0

1

0
0

1

1

0
0

1

1

1
0

0

1

2

3

01101100

01010011

11010001

00110111

bytes

Review: Bits Require Interpretation

10001100 00001100 10101100 00000000

might be interpreted as

• The integer 3,485,745

• A floating point number close to 4.884569 x 10-39

• The string “105”

• A portion of an image or video

• An address in memory

Representing Integers

• Arabic Numerals: 47

• Roman Numerals: XLVII

• Brahmi Numerals:

• Tally Marks: IIII IIII IIII IIII IIII IIII IIII IIII IIII II

Base-10 Integers

1000 (103) 100 (102) 10 (101) 1 (100)

0 0 0 5

0 0 4 7

1 8 8 7

Base-2 Integers (aka Binary Numbers)

128 (27) 64 (26) 32 (25) 16 (24) 8 (23) 4 (22) 2 (21) 1 (20)

0 0 0 0 0 1 0 1

0 0 1 0 1 1 1 1

1 1 1 1 1 1 1 1

Exercise 1: Binary Numbers

• Consider the following four-bit binary values. What is the

(base-10) integer interpretation of these values?

1. 0001

2. 1010

3. 0111

4. 1111

1

10

7

15

Representing Signed Integers
• Option 1: sign-magnitude

• One bit for sign; interpret rest as magnitude

• 𝑆𝑖𝑔𝑛𝑒𝑑 𝑥 = −1 𝑥𝑤−1
 ⋅ σ𝑖=0

𝑤−2 𝑥𝑖 ⋅ 2𝑖

+/- 64 (26) 32 (25) 16 (24) 8 (23) 4 (22) 2 (21) 1 (20)

0 0 0 0 0 1 0 1

1 0 0 0 0 1 0 1

-

1 1 1 1 1 1 1 1

Representing Signed Integers
• Option 2: excess-K

• Choose a positive K in the middle of the unsigned range

• 𝑆𝑖𝑔𝑛𝑒𝑑 𝑥 = σ𝑖=0
𝑤−1 𝑥𝑖 ⋅ 2𝑖 − 2𝑤−1

128 (27) 64 (26) 32 (25) 16 (24) 8 (23) 4 (22) 2 (21) 1 (20) -128

0 0 0 0 0 1 0 1

1 0 0 0 0 1 0 1

1 1 1 1 1 1 1 1

Representing Signed Integers
• Option 3: two’s complement

• Like unsigned, except the high-order contribution is negative

• 𝑆𝑖𝑔𝑛𝑒𝑑 𝑥 = −𝑥𝑤−1 ⋅ 2𝑤−1 + σ𝑖=0
𝑤−2 𝑥𝑖 ⋅ 2𝑖

-128 (-27) 64 (26) 32 (25) 16 (24) 8 (23) 4 (22) 2 (21) 1 (20)

0 0 0 0 0 1 0 1

1 0 0 0 0 1 0 1

1 1 1 1 1 1 1 1

Exercise 2: (Signed) Binary Numbers

• Consider the following four-bit binary values. What is the

(base-10) signed integer interpretation of these values?

1. 0001

2. 1010

3. 0111

4. 1111

1

-6

7

-1

Signed Integer Trivia

Base-10 unsigned signed

7 111

6 110

5 101

4 100

3 011 011

2 010 010

1 001 001

0 000 000

-1 111

-2 110

-3 101

-4 100

• For signed ints:

• high-order (left-most) bit is

0 for pos values, 1 for neg

• 000…0 is 0

• 111…1 is -1

• same representation as

unsigned for numbers that

can be represented with

both

• ~x+1 == -1*x

Integers in C

C Data Type Size (bytes)

unsigned char 1

unsigned short 2

unsigned int 4

unsigned long 8

C Data Type Size (bytes)

char 1

short 2

int 4

long 8

ASCII characters
Char Dec Binary

! 33 00100001

" 34 00100010

35 00100011

$ 36 00100100

% 37 00100101

& 38 00100110

' 39 00100111

(40 00101000

) 41 00101001

* 42 00101010

+ 43 00101011

, 44 00101100

- 45 00101101

. 46 00101110

/ 47 00101111

0 48 00110000

Char Dec Binary

1 49 00110001

2 50 00110010

3 51 00110011

4 52 00110100

5 53 00110101

6 54 00110110

7 55 00110111

8 56 00111000

9 57 00111001

: 58 00111010

; 59 00111011

< 60 00111100

= 61 00111101

> 62 00111110

? 63 00111111

@ 64 01000000

Char Dec Binary

A 65 01000001

B 66 01000010

C 67 01000011

D 68 01000100

E 69 01000101

F 70 01000110

G 71 01000111

H 72 01001000

I 73 01001001

J 74 01001010

K 75 01001011

L 76 01001100

M 77 01001101

N 78 01001110

O 79 01001111

P 80 01010000

Char Dec Binary

Q 81 01010001

R 82 01010010

S 83 01010011

T 84 01010100

U 85 01010101

V 86 01010110

W 87 01010111

X 88 01011000

Y 89 01011001

Z 90 01011010

[91 01011011

\ 92 01011100

] 93 01011101

^ 94 01011110

_ 95 01011111

` 96 01100000

Char Dec Binary

a 97 01100001

b 98 01100010

c 99 01100011

d 100 01100100

e 101 01100101

f 102 01100110

g 103 01100111

h 104 01101000

i 105 01101001

j 106 01101010

k 107 01101011

l 108 01101100

m 109 01101101

n 110 01101110

o 111 01101111

p 112 01110000

Casting between Numeric Types

• Casting from shorter to longer types preserves the value

• Casting from longer to shorter types drops the high-order

bits

• Casting between signed/unsigned types preserves the

bits (it just changes the interpretation)

• Implicit casting occurs in assignments and parameter

lists. In mixed expressions, signed values are implicitly

cast to unsigned
• Source of many errors!

Hexidecimal Numbers

00101100 00110101 00110000 11100001 Dec Hex

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

a

b

c

d

e

f

2 c 3 5 3 0 e 1

0x2c3530e1

Exercise 3: Hexidecimal Numbers

• Consider the following hexidecimal values. What is the

representation of each value in binary?

1. 0x0a

2. 0x11

3. 0x2f

00001010 (10)

00010001 (17)

00101111 (47)

Endianness

47 vs 74

Endianness

• Big Endian: low-order bits go on the right (47)

• I tend to think in big endian numbers, so examples in class will

generally use this representation

• Networks generally use big endian (aka network byte order)

• Little Endian: low-order bits go on the left (74)

• Most modern machines use this representation

• I will try to always be clear about whether I'm using a big

endian or little endian representation

• When in doubt, ask!

Arithmetic Logic Unit (ALU)

• circuit that performs bitwise operations and arithmetic on

integer binary types

Bitwise vs Logical Operations (in C)
• Bitwise Operators &, |, ~, ^

• View arguments as bit vectors

• operations applied bit-wise in parallel

• Logical Operators &&, ||, !
• View 0 as “False”

• View anything nonzero as “True”

• Always return 0 or 1

• Early termination

• Shift operators <<, >>

• Left shift fills with zeros

• For unsigned integers, right shift is logical (fills with zeros)

• For signed integers, right shift is arithmetic (fills with high-order bit)

Exercise 4: Bitwise vs Logical Operations
• What is the binary representation of each of the following

expressions? Assume signed char data type (one byte).

1. ~(-30)

2. -30 & 22

3. -30 && 22

4. 22 << 1

5. 22 >> 1

6. -30 >> 1

= ~(11100010) = 00011101 = 29

= 11100010 && 00010110 = 00000001 = 1

= 00010110 << 1 = 00101100 = 44

= 11100010 >> 1 = 11110001 = -15

= 11100010 & 00010110 = 00000010 = 2

= 00010110 >> 1 = 00001011 = 11

Multiplying with Shifts

• Multiplication is slow

• Bit shifting is kind of like multiplication/division, and is

often faster

• x * 8 = x << 3

• x * 10 = x << 3 + x << 1

• Most compilers will automatically replace multiplications

with shifts where possible

Arithmetic Operations (in C)
• Basic Math Operators +, -, *, /

• division is integer division (rounds towards zero)

• Modulus Operator %

• Increment/Decrement operators ++, --

• x++ is the same as x = x+1 or x += 1

• x-- is the same as x = x-1 or x -= 1

Addition Example

• Compute 5 + -3 assuming all ints are stored as four-bit

signed values

0 1 0 1
+ 1 1 0 1

0 1 0 0

1

= 2 (Base-10)

1

Like you learned in grade school, only binary!

… and with a finite number of digits

Addition/Subtraction with Overflow

• Compute 5 + 6 assuming all ints are stored as four-bit

signed values

0 1 0 1
+ 0 1 1 0

1 1 0 1

1

= -5 (Base-10)

Error Cases

• Assume 𝑤-bit signed values

𝑥 +𝑤
𝑡 𝑦 = ൞

𝑥 + 𝑦 − 2𝑤 (positive overflow)

𝑥 + 𝑦 (normal)

𝑥 + 𝑦 + 2𝑤 (negative overflow)

• overflow has occurred iff 𝑥 > 0 and y > 0 and 𝑥 +𝑤
𝑡 𝑦 < 0

 or 𝑥 < 0 and y < 0 and 𝑥 +𝑤
𝑡 𝑦 > 0

0 2𝑤−1 − 1 2 ⋅ (2𝑤−1 − 1)

[]
representable values

[]
Possible values of 𝑥 + 𝑦

−2𝑤−1−2 ⋅ 2𝑤−1

Exercise 5: Binary Addition

• Given the following 5-bit signed values, compute their

sum and indicate whether or not an overflow occurred

x y x+y overflow?

00010 00101

01100 00100

10100 10001

00101

10000

00101

no

yes

yes

x+y overflow?

+ _

Multiplication Example

• Compute 3 x 2 assuming all ints are stored as four-bit

signed values

0 0 1 1
x 0 0 1 0

= 6 (Base-10)

0 0 0 0
0 0 1 1 0

0 1 1 0

Like you learned in grade school, only binary!

… and with a finite number of digits

Multiplication Example

• Compute 5 x 2 assuming all ints are stored as four-bit

signed values

0 1 0 1
x 0 0 1 0

= -6 (Base-10)

0 0 0 0
0 1 0 1 0+ _

1 0 1 0

Error Cases

• Assume 𝑤-bit unsigned values

• 𝑥 ∗𝑤
𝑡 𝑦 = 𝑈2𝑇(𝑥 ⋅ 𝑦 mod 2𝑤)

Possible values of 𝑥 ∗ 𝑦

0 2𝑤−1 − 1 22(𝑤−1)

[]
representable values

[)

−2𝑤−1−22(𝑤−1)

Exercise 6: Binary Multiplication

• Given the following 3-bit signed values, compute their

product and indicate whether or not an overflow occurred

x y x*y overflow?

100 101

010 011

111 010

100

110

110

yes

yes

no

x*y overflow?

	Slide 1: Lecture 2: Representing Integers
	Slide 2: Review: Memory
	Slide 3: Review: Bits Require Interpretation
	Slide 4: Representing Integers
	Slide 5: Base-10 Integers
	Slide 6: Base-2 Integers (aka Binary Numbers)
	Slide 7: Exercise 1: Binary Numbers
	Slide 8: Representing Signed Integers
	Slide 9: Representing Signed Integers
	Slide 10: Representing Signed Integers
	Slide 11: Exercise 2: (Signed) Binary Numbers
	Slide 12: Signed Integer Trivia
	Slide 13: Integers in C
	Slide 14: ASCII characters
	Slide 15: Casting between Numeric Types
	Slide 18: Hexidecimal Numbers
	Slide 19: Exercise 3: Hexidecimal Numbers
	Slide 20: Endianness
	Slide 21: Endianness
	Slide 22: Arithmetic Logic Unit (ALU)
	Slide 23: Bitwise vs Logical Operations (in C)
	Slide 24: Exercise 4: Bitwise vs Logical Operations
	Slide 25: Multiplying with Shifts
	Slide 26: Arithmetic Operations (in C)
	Slide 27: Addition Example
	Slide 28: Addition/Subtraction with Overflow
	Slide 29: Error Cases
	Slide 30: Exercise 5: Binary Addition
	Slide 31: Multiplication Example
	Slide 32: Multiplication Example
	Slide 33: Error Cases
	Slide 34: Exercise 6: Binary Multiplication

