Lecture 2: Representing Integers

CS 105

Fall 2024

Review: Memory

- Memory is an array of bits
- A byte is a unit of eight bits
- An index into the array is an address, location, or pointer
 - Often expressed in hexadecimal
- We speak of the *value* in memory at an address
 - The value may be a single byte ...
 - ... or a multi-byte quantity starting at that address

Review: Bits Require Interpretation

10001100 00001100 10101100 00000000 might be interpreted as

- The integer 3,485,745
- A floating point number close to 4.884569 x 10⁻³⁹
- The string "105"
- A portion of an image or video
- An address in memory

Representing Integers

- Arabic Numerals: 47
- Roman Numerals: XLVII
- Tally Marks: JHT JHT JHT JHT JHT JHT JHT III

Base-10 Integers

Base-2 Integers (aka Binary Numbers)

128 (2⁷) 64 (2⁶) 32 (2⁵) 16 (2⁴) 8 (2³) 4 (2²) 2 (2¹) 1 (2⁰)

Exercise 1: Binary Numbers

- Consider the following four-bit binary values. What is the (base-10) integer interpretation of these values?
 - 1. 0001
 - 2. 1010
 - 3. 0111
 - 4. 1111

Representing Signed Integers

- Option 1: sign-magnitude
 - One bit for sign; interpret rest as magnitude
 - $Signed(x) = (-1)^{x_{w-1}} \cdot \sum_{i=0}^{w-2} x_i \cdot 2^i$

64 (2⁶) 32 (2⁵) 16 (2⁴) 8 (2³) **4 (2**²) **2 (2**¹) 1 (2°) +/-

Representing Signed Integers

- Option 2: excess-K
 - Choose a positive K in the middle of the unsigned range
 - $Signed(x) = \sum_{i=0}^{w-1} x_i \cdot 2^i 2^{w-1}$

 (2^7) 64 (2^6) 32 (2^5) 16 (2^4) 8 (2^3) 4 (2^2) 2 (2^1) 1 (2⁰) -128

Representing Signed Integers

- Option 3: two's complement
 - Like unsigned, except the high-order contribution is negative
 - Signed(x) = $-x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$

-128 (-2⁷) 64 (2⁶) 32 (2⁵) 16 (2⁴) 8 (2³) 4 (2²) 2 (2¹) 1 (2⁰)

Exercise 2: (Signed) Binary Numbers

- Consider the following four-bit binary values. What is the (base-10) signed integer interpretation of these values?
 - 1. 0001
 - 2. 1010
 - 3. 0111
 - 4. 1111

Signed Integer Trivia

Base-10	unsigned	signed
7	111	
6	110	
5	101	
4	100	
3	011	011
2	010	010
1	001	001
0	000	000
-1		111
-2		110
-3		101
-4		100

• For signed ints:

- high-order (left-most) bit is
 0 for pos values, 1 for neg
- 000...0 is 0
- 111…1 is -1
- same representation as unsigned for numbers that can be represented with both

•
$$\sim x+1 = -1^*x$$

Integers in C

C Data Type	Size (bytes)		
unsigned char	1		
unsigned short	2		
unsigned int	4		
unsigned long	8		

C Data Type	Size (bytes)
char	1
short	2
int	4
long	8

ASCII characters

Char	Dec	Binary	Char	Dec	Bi									
!	33	00100001	1	49	00110001	А	65	01000001	Q	81	01010001	а	97	0110
"	34	00100010	2	50	00110010	В	66	01000010	R	82	01010010	b	98	0110
#	35	00100011	3	51	00110011	С	67	01000011	S	83	01010011	С	99	0110
\$	36	00100100	4	52	00110100	D	68	01000100	Т	84	01010100	d	100	0110
%	37	00100101	5	53	00110101	Е	69	01000101	U	85	01010101	е	101	0110
&	38	00100110	6	54	00110110	F	70	01000110	V	86	01010110	f	102	0110
I	39	00100111	7	55	00110111	G	71	01000111	W	87	01010111	g	103	011
(40	00101000	8	56	00111000	н	72	01001000	Х	88	01011000	h	104	0110
)	41	00101001	9	57	00111001	I.	73	01001001	Y	89	01011001	i	105	0110
*	42	00101010	:	58	00111010	J	74	01001010	Z	90	01011010	j	106	0110
+	43	00101011	;	59	00111011	К	75	01001011	[91	01011011	k	107	0110
,	44	00101100	<	60	00111100	L	76	01001100	١	92	01011100	I	108	0110
-	45	00101101	=	61	00111101	М	77	01001101]	93	01011101	m	109	0110
	46	00101110	>	62	00111110	N	78	01001110	^	94	01011110	n	110	011
/	47	00101111	?	63	00111111	0	79	01001111	_	95	01011111	0	111	011
0	48	00110000	@	64	0100000	Р	80	01010000	``	96	01100000	р	112	0111

Casting between Numeric Types

- Casting from shorter to longer types preserves the value
- Casting from longer to shorter types drops the high-order bits
- Casting between signed/unsigned types preserves the bits (it just changes the interpretation)
- Implicit casting occurs in assignments and parameter lists. In mixed expressions, signed values are implicitly cast to unsigned
 - Source of many errors!

Hexidecimal Numbers

0x2c3530e1

Dec	Hex		
0	0		
1	1		
2	2		
3	3		
4	4		
5	5		
6	6		
7	7		
8	8		
9	9		
10	а		
11	b		
12	С		
13	d		
14	е		
15	f		

Exercise 3: Hexidecimal Numbers

- Consider the following hexidecimal values. What is the representation of each value in binary?
 - **1.** 0x0a
 - 2. 0x11
 - 3. 0x2f

Endianness

47 vs 74

The way traditionally lilliputians broke their boiled eggs on the larger end

BIG ENDIAN

The way the king then ordered lilliputians to break their boiled eggs on the smaller end

Little ENDIAN

Endianness

• **Big Endian:** low-order bits go on the right (47)

- I tend to think in big endian numbers, so examples in class will generally use this representation
- Networks generally use big endian (aka network byte order)
- Little Endian: low-order bits go on the left (74)
 - Most modern machines use this representation
- I will try to always be clear about whether I'm using a big endian or little endian representation
- When in doubt, ask!

Arithmetic Logic Unit (ALU)

 circuit that performs bitwise operations and arithmetic on integer binary types

Bitwise vs Logical Operations (in C)

- Bitwise Operators &, |, ~, ^
 - View arguments as bit vectors
 - operations applied bit-wise in parallel
- Logical Operators &&, ||, !
 - View 0 as "False"
 - View anything nonzero as "True"
 - Always return 0 or 1
 - Early termination
- Shift operators << , >>
 - Left shift fills with zeros
 - For unsigned integers, right shift is logical (fills with zeros)
 - For signed integers, right shift is arithmetic (fills with high-order bit)

Exercise 4: Bitwise vs Logical Operations

- What is the binary representation of each of the following expressions? Assume signed char data type (one byte).
 - 1. ~(-30)
 - 2. -30 & 22
 - 3. -30 && 22
 - 4. 22 << 1
 - 5. 22 >> 1
 - **6**. −30 >> 1

Multiplying with Shifts

- Multiplication is slow
- Bit shifting is kind of like multiplication/division, and is often faster
 - x * 8 = x << 3
 - x * 10 = x << 3 + x << 1
- Most compilers will automatically replace multiplications with shifts where possible

Arithmetic Operations (in C)

- Basic Math Operators +, -, *, /
 - division is integer division (rounds towards zero)
- Modulus Operator %
- Increment/Decrement operators ++, --
 - x++ is the same as x = x+1 or x += 1
 - x-- is the same as x = x-1 or x -= 1

Addition Example

 Compute 5 + -3 assuming all ints are stored as four-bit signed values

$$\begin{array}{r}
 1 & 1 \\
 0 & 1 & 0 & 1 \\
 + & 1 & 1 & 0 & 1 \\
 & 0 & 0 & 1 & 0 & 0 \\
 \end{array}$$

Like you learned in grade school, only binary! ... and with a finite number of digits

Addition/Subtraction with Overflow

 Compute 5 + 6 assuming all ints are stored as four-bit signed values

$$1
 0101
 + 0110
 1011 = -5 (Base-10)$$

Error Cases

Assume w-bit signed values

•
$$x +_{w}^{t} y = \begin{cases} x + y - 2^{w} & \text{(positive overflow)} \\ x + y & \text{(normal)} \\ x + y + 2^{w} & \text{(negative overflow)} \end{cases}$$

• overflow has occurred iff x > 0 and y > 0 and $x +_w^t y < 0$ or x < 0 and y < 0 and $x +_w^t y > 0$

Exercise 5: Binary Addition

 Given the following 5-bit signed values, compute their sum and indicate whether or not an overflow occurred

X	У	х+у	overflow?
00010	00101		
01100	00100		
10100	10001		

Multiplication Example

 Compute 3 x 2 assuming all ints are stored as four-bit signed values

 $\begin{array}{r} 0011\\ \underline{x0010}\\ 0000\\ \underline{+00110}\\ 0110 = 6 (Base-10) \end{array}$

Like you learned in grade school, only binary! ... and with a finite number of digits

Multiplication Example

 Compute 5 x 2 assuming all ints are stored as four-bit signed values

 $\begin{array}{r} 0101\\ \underline{X0010}\\ 0000\\ \underline{+01010}\\ 1010 = -6 \ (Base-10) \end{array}$

Error Cases

• Assume *w*-bit unsigned values

•
$$x *_w^t y = U2T((x \cdot y) \mod 2^w)$$

Exercise 6: Binary Multiplication

 Given the following 3-bit signed values, compute their product and indicate whether or not an overflow occurred

X	У	x*y	overflow?
100	101		
010	011		
111	010		