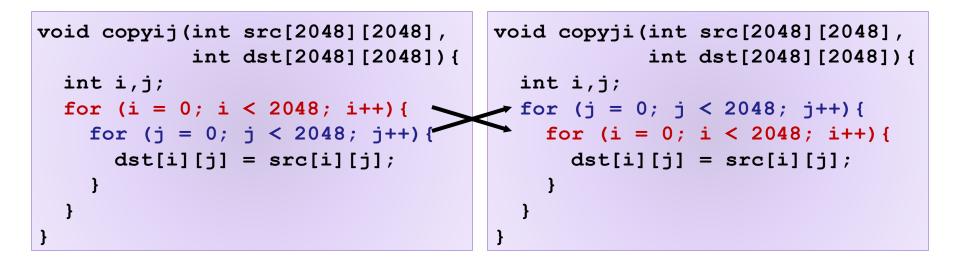
Lecture 1: Introduction to Computer Systems

CS 105

Fall 2024

https://cs.pomona.edu/classes/cs105/

Abstraction



Correctness

• Example 1: Is $x^2 \ge 0$?

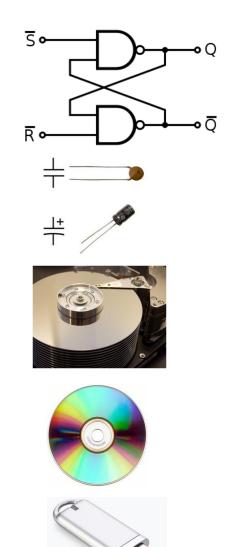
• Example 2: Is (x + y) + z = x + (y + z)?

Performance

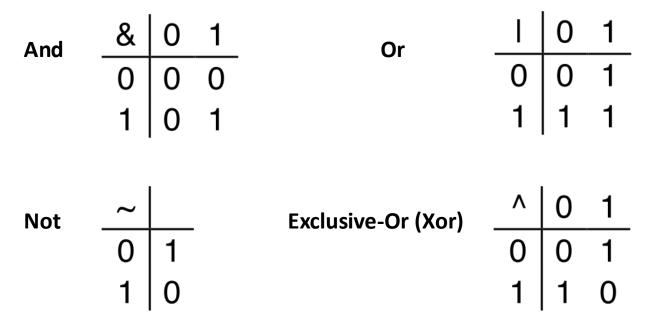
Security

```
int buggy_authenticate() {
   char password[4]; // allocate space to store a string
   gets(password); // initialize string from user input
   return 0; // always returns False
}
void example3() {
   if(buggy_authenticate()) { // equivalent to if False
      printf("The answer is 42\n"); // should never happen
   } else {
      printf("Unauthenticated User (correct behavior)\n");
   }
}
```

BITS


Bits

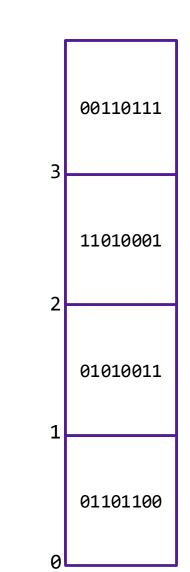
- a bit is a binary digit that can have two possible values
- can be physically represented with a two state device


Storing bits

- Static random access memory (SRAM): stores each bit of data in a flip-flop, a circuit with two stable states
- Dynamic Memory (DRAM): stores each bit of data in a capacitor, which stores energy in an electric field (or not)
- Magnetic Disk: regions of the platter are magnetized with either N-S polarity or S-N polarity
- Optical Disk: stores bits as tiny indentations (pits) or not (lands) that reflect light differently
- Flash Disk: electrons are stored in one of two gates separated by oxide layers

Boolean Algebra

- Developed by George Boole in 19th Century
- Algebraic representation of logic---encode "True" as 1 and "False" as 0


How does this map to set operations?

Exercise 1: Boolean Operations

- Evaluate each of the following expressions
 - 1. 1 | (~1) 2. ~(1 | 1)
 - 3. (~1) & 1
 - 4. ~(1 ^ 1)

Bytes and Memory

- Memory is an array of bits
- A byte is a unit of eight bits
- An index into the array of memory is an address, location, or pointer
- We speak of the value in memory at an address
 - The value may be a single byte ...
 - ... or a multi-byte quantity starting at that address

General Boolean algebras

• Bitwise operations on bytes

01101001	01101001	01101001	
& 01010101	01010101	^ 01010101	~ 01010101
01000001	01111101	00111100	10101010

Exercise 2: Bitwise Operations

- Assume: a = 01101100, b = 10101010
- What are the results of evaluating the following Boolean operations?
 - ~a
 - a & b
 - a | b
 - a ^ b

Bitwise vs Logical Operations

- Bitwise Operators &, |, ~, ^
 - View arguments as bit vectors
 - operations applied bit-wise in parallel
- Logical Operators &&, ||, !
 - View 0 as "False"
 - View anything nonzero as "True"
 - Always return 0 or 1
 - Early termination

Exercise 3: Bitwise vs Logical Operations

- ~01101100
- ~00000000
- ~~01101100
- !01101100
- !0000000
- !!01101100
- 01101100 & 10101010
- 01101100 | 10101010
- 01101100 && 10101010
- 01101100 || 10101010

Bit Shifting

- Left Shift: x << y
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right

Undefined Behavior if you shift amount < 0 or ≥ word size

- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift: Fill with 0's on left
 - Arithmetic shift: Replicate most significant bit on left

Choice between logical and arithmetic depends on the type of data

Example: Bit Shifting

- 01101001 << 4
- 01101001 >>₁ 2
- 01101001 >>_a 4

10010000 00011010 00000110

Exercise 4: Bit Shifting

- 10101010 << 4
- 10101010 >>₁ 4
- 10101010 >>_a 4

Bits and Bytes Require Interpretation

10001100 00001100 10101100 00000000 might be interpreted as

- The integer 3,485,745
- A floating point number close to 4.884569 x 10⁻³⁹
- The string "105"
- A portion of an image or video
- An address in memory

Information is Bits + Context

LOGISTICS

The Course in a Nutshell

- Textbooks (not required)
 - Bryant and O'Halloran, Computer Systems: A Programmer's Perspective, third edition, Pearson, 2016
 - Arpaci-Dusseau and Arpaci-Dusseau, Operating Systems: Three Easy Pieces, online, 2018
- Classes
 - Monday and Wednesday, 2:45-4pm in Edmunds 101
- Labs
 - Wednesdays 7-8:15pm in Edmunds 229/219
 - Starts this Wednesday!
- Office Hours TBA (M 4:15-5:15pm today)
- Mentor Sessions TBA

Grading

- Assignments (9)
 - Introduced during labs, Due Tuesdays at 11:59pm
 - Tremendous fun, work in pairs
 - 10 late days
- Check-ins (5)
 - three-question quizzes (13 topics total)
 - September 18, October 9, October 30, November 20, December 4
 - Can improve grade on any topics(s) with "Extra Chance Check-in" (may take after any later check-in or during final exam time Dec 9 @2-5pm)
- Grades
 - Must successfully complete all the assignments
 - Beyond that, 45% assignments, 50% check-ins, 5% participation

Course website

https://cs.pomona.edu/classes/cs105

- All information is on the course website
- All course materials get posted on the course website
- Links from the course page:
 - Slack (#cs105-2024fa), for questions and discussion
 - Gradescope, for submitting assignments and seeing grades
 - Additional resources