
CS 105 Fall 2024

Lab 1: Introduction C

C

• compiled, imperative language that provides low-level

access to memory

• low overhead, high performance

• developed at Bell labs in the

1970s

• C (and related languages) still

 commonly used today

Java

C/C++

PHP

Rust

Kotlin

Ruby

Variables

• Declaration

• Assignment

• Declaration and assignment

int myVariable;

type name semi-colon

myVariable = 47;

name semi-colonvalue

int myVariable = 47;

Operations

• Arithmetic Operations: +, -, *, /, %

• Boolean Operators: ==, !=, >, >=, <, <=

• Logical Operations: &&, ||, !

• Bitwise Binary Operations: &, |, ~, ^

int x = 47;

int y = !x;

y = x && y;

int x = 47;

int y = x + 13;

y = (x * y) % 5;

int x = (13 == 47);

int x = 47;

int y = ~x;

y = x & y;

Control Flow

Conditionals While Loops

int x = 13;

int y;

if (x == 47){

 y = 1;

} else {

 y = 0;

}

int x = 47;

while (x > 0){

 x = x – 1;

}

For Loops

int x = 0;

for (int i=0; i < 47; i++){

 x = x + i;

}

Do-While Loops

int x = 47;

do {

 x = x - 1;

} while (x > 0);

Functions

Declaring a Function Calling a Function

int myFunction(int x, int y){

 int z = x – 2*y;

 return z * x;

}

int a;

a = myFunction(47, 13);

Main Functions

• By convention, main functions in C take two arguments:

1. int argc

2. char** argv

• By convention, main functions in C return an int

• 0 if program exited successfully

int main(int argc, char** argv){

 // do stuff

 return 0;

}

Printing

printf("Hello world!\n");

printf("%d is a number\n", 13);

printf("%d is a number greater than %f\n”, 47, 3.14);

Compilation

• gcc -o hello hello.c

Pre-

processor
(cpp)

hello.i Compiler
(cc1)

hello.s Assembler
(as)

hello.o Linker
(ld)

hellohello.c

Source

program

(text)

Modified

source

program

(text)

Assembly

program

(text)

Relocatable

object

programs

(binary)

Executable

object

program

(binary)

printf.o

#include<stdio.h>

int main(int argc,

 char ** argv){

 printf("Hello

 world!\n");

 return 0;

}

…

int printf(const char *

 restrict,

 ...)

__attribute__((__format_

_ (__printf__, 1, 2)));

…

int main(int argc,

 char ** argv){

 printf("Hello

 world!\n");

 return 0;

}

pushq %rbp

movq %rsp, %rbp

subq $32, %rsp

leaq L_.str(%rip), %rax

movl $0, -4(%rbp)

movl %edi, -8(%rbp)

movq %rsi, -16(%rbp)

movq %rax, %rdi

movb $0, %al

callq _printf

xorl %ecx, %ecx

movl %eax, -20(%rbp)

movl %ecx, %eax

addq $32, %rsp

popq %rbp

retq

55

48 89 e5

48 83 ec 20

48 8d 05 25 00 00 00

c7 45 fc 00 00 00 00

89 7d f8

48 89 75 f0

48 89 c7

b0 00

e8 00 00 00 00

31 c9

89 45 ec

89 c8

48 83 c4 20

5d

c3

compiler output name filename

Running a Program

• ./hello

Example C Types

C Data Type size (in bytes)

int 4

double 8

char 1

long 8

short 2

float 4

Review: Bytes and Memory

• Memory is an array of bits

• A byte is a unit of eight bits

• An index into the array of memory is

an address, location, or pointer

• Often expressed in hexadecimal

• We speak of the value in memory at

an address

• The value may be a single byte …

• … or a multi-byte quantity starting

at that address
1

0

1
0

0

0

1
1

0

1

1
0

1

1

0
0

0

1

1
1

0

1

0
0

1

1

0
0

1

1

1
0

0

1

2

3

01101100

01010011

11010001

00110111

bytes

Pointers

• Pointers are addresses in
memory (i.e., indexes into the
array of bytes)

• Most pointers declare how to
interpret the value at (or
starting at) that address

• Example:

• Dereferencing pointers:

Pointer Types x86-64

char* 8

int* 8

double* 8

⋮ 8

int myVariable = 47;

int* ptr = &myVariable;

int var2 = *ptr

& and * are inverses of one another

& is an "address of" operator

* is a "value at" operator

Exercise

What does x evaluate to in each of the following?

1.

2.

3.

4.

20

24

28

32

32

47

42

13

int* ptr = 32;

x = *ptr;

y

int y = 42; // assume allocated at address 28

x = &y;

int* ptr = 20;

x = *(*ptr);

int* x = 24;

*x = 47;

0

Casting between Pointer Types

• You can cast values between different types

• This includes between different pointer types!

• Doesn't change value of address

• Does change what you get when you dereference!

• Example:

int x = 47; // assume allocated at address 24

char* ptr2 = (char*) ptr; // ptr2 == 24

32

47

42

13

20

24

28

32

x

int y = *ptr; // y == 47

char c = *ptr2; // c == ??

int* ptr = &x; // ptr == 24 c

Arrays

• Contiguous block of memory

• Random access by index

• Indices start at zero

• Declaring an array:

• Accessing an array:

• Arrays are pointers!

• The array variable stores the address of the first element in the array

int array1[5]; // array of 5 ints named array1

char array2[47]; // array of 47 chars named array2

int array3[7][4]; // two dimensional array named array3

int x = array1[2]; // array[k] is the same as *(array+k)

Strings

• Strings are just arrays of characters

• aka strings are just pointers

• declared as type char*

• End of string is denoted by null byte \0

Pointer Arithmetic

• Location of ptr+k depends on the type of ptr

• adding 1 to a pointer p adds 1*sizeof(*p) to the

address

• array[k] is the same as *(array+k)

char* ptr = &my_char; // assume ptr == 32

int* ptr2 = (int*) ptr;

ptr += 1;

ptr2 += 1;

// ptr == 33

// ptr2 == 36

// ptr2 == 32

Exercise 2

What does x evaluate to in each of the following?

1.

2.

3.

4.

20

24

28

32

32

13

47

20

int* ptr = 20;

int* x = ptr+2;

int* ptr = 20;

int x = *(ptr+2)

char* ptr = 20;

char* x = ptr+2;

char* ptr = 20;

int x = *((int*)(ptr + 4));

• Heterogeneous records, like objects

• Typical linked list declaration:

• Usage:

• Usage with pointers:

struct cell {

 int value;

 struct cell *next;

};

Structs

typedef struct cell {

 int value;

 struct cell *next;

} cell_t;

cell_t c;

c.value = 42;

c.next = NULL;

cell_t *p;

p->value = 42;

p->next = NULL;

p->next is an

abbreviation for
(*p).next

Exercise 3
typedef struct example {

 int y;

 int z;

} example_t;

20

24

28

32

32

13

47

105What does x evaluate to in each of the following?

1.

2.

3.

4.

example_t* p = 20;

example_t ex = *p;

int x = ex.y;

example_t* p = 20;

int x = p->y;

example_t* p = 20;

int x = (p+1)->z;

example_t* p = 20;

example_t ex = *(p+1);

int x = ex.z;

	Slide 1: Lab 1: Introduction C
	Slide 2: C
	Slide 3: Variables
	Slide 4: Operations
	Slide 5: Control Flow
	Slide 6: Functions
	Slide 7: Main Functions
	Slide 8: Printing
	Slide 9: Compilation
	Slide 10: Running a Program
	Slide 11: Example C Types
	Slide 12: Review: Bytes and Memory
	Slide 13: Pointers
	Slide 14: Exercise
	Slide 15: Casting between Pointer Types
	Slide 16: Arrays
	Slide 17: Strings
	Slide 18: Pointer Arithmetic
	Slide 19: Exercise 2
	Slide 20: Structs
	Slide 21: Exercise 3

