Lab 1: Introduction C

CS 105 Fall 2024

C

- compiled, imperative language that provides low-level
access to memory

- low overhead, high performance

Top Computer Languages (Jan 2024)

- developed at Bell labs in the e —

1970s o —

- C (and related languages) still ;= ==
commonly used today =

Kotlin -

]
MATLAB —]

Languag
|

Ruby =

Visual Basic .-

0 10 20 30

Share (%)
@pryrL @ TIOBE

Variables

- Declaration

int myVariable;
I\ o

I I
type name semi-colon

- Assignment

myVariable = é'z,(r,
I
name value semi-colon

- Declaration and assignment

int myVariable = 47;

Operations

- Arithmetic Operations: +, -, *, /, %

- Boolean Operators: ==, !=,

|
\%4
-
\4
|
-
N\
-
N
|

int x = (13 == 47) ;

- Logical Operations: &&, ||, !

int x =
int y = !'x;
Yy = X && y;

- Bitwise Binary Operations: &, |, ~, *

int x
int y
Y =X

2 Il
K

Control Flow

While Loops

int x = 47;

while (x > 0){
x=x-1;

}

Conditionals

int x = 13;
int y;
if (x == 47){

y =1;
} else {

y = 0;
}

Do-While Loops

int x = 47;
do {

X = X s

} while (x > 0);

For Loops

int x = 0;

for (int i=0; i < 47;

X =x + i;

}

i++) {

Functions

Declaring a Function

Calling a Function

int myFunction(int x, int y) {

int z = x - 2*y;
return z * x;

int a;

a = myFunction (47, 13);

Main Functions

- By convention, main functions in C take two arguments:
1. 1int argc
2. char** argv

- By convention, main functions in C return an int
- O If program exited successfully

int main(int argc, char** argv) {
// do stuff

return 0;

}

Printing

printf ("Hello world!\n") ;
printf ("%d is a number\n", 13);

printf ("%$d is a number greater than %$£f\n”, 47, 3.14);

Compilation

compilei-r output pame filenfitme

| N \{ |
- gcc -0 hello hello.c

printf.o
Pre- , . |—> .
hello.c hello.i Compiler | hello.s [Assemblef hello.o Linker hello
» [Processor > > > >
(cpp) (ccl) (as) (19)
Source Modified Assembly Relocatable Executable
program source program object object
(text) program (text) programs program
(text) (binary) (binary)
#include<stdio.h> . pushqg %rbp 55
int printf (const char * movq $rsp, %rbp 48 89 e5
int main(int argc, restrict, subg $32, %rsp 48 83 ec 20
char ** argv) { ..l) leagq L .str(%rip), %rax || 48 8d 05 25 00 00 00
__attribute_ ((__format_ || movl $0, -4 (%rbp) c7 45 f£c 00 00 00 00
printf ("Hello _ (_printf__, 1, 2))); movl $%$edi, -8 (%rbp) 89 7d f£8
world!\n") ; - movq %rsi, -16(%rbp) 48 89 75 £0
return 0; int main(int argc, movq $%rax, 3%rdi 48 89 c7
} char ** argv) { movb $0, %$al b0 00
callg printf e8 00 00 00 0O
printf ("Hello xorl %ecx, %ecx 31 9
world!\n") ; movl %eax, -20(%rbp) 89 45 ec
return O; movl $%ecx, %eax 89 c8
} addg $32, %rsp 48 83 c4 20
popg %rbp 5d
retqg c3

Running a Program

- ./hello

Example C Types

C Data Type size (in bytes)

int 4
long 8
short 2
char 1
double 8
float 4

Review: Bytes and Memory

_ bytes
- Memory is an array of-sts-

- Abyte is a unit of eight bits

- An index into the array of memory is
an address, location, or pointer

- Often expressed in hexadecimal

- We speak of the value in memory at
an address

- The value may be a single byte ...

- ... or a multi-byte quantity starting
at that address

00110111

11010001

01010011

01101100

Pointers

- Pointers are addresses In
memory (i.e., indexes into the
array of bytes)

- Most pointers declare how to
Interpret the value at (or
starting at) that address

- Example:

int myVariable = 47;
int* ptr = &myVariable;

- Dereferencing pointers:

int var2 = *ptr

Pointer Types x86-64

char*

int*

double*

O | 60 | OO | OO

& is an "address of" operator
*|s a "value at" operator

& and * are inverses of one another

Exercise

What does x evaluate to in each of the following?

1. int* ptr = 32;

X = *ptr;

2. 'int y = 42; // assume allocated at address 28

4. int* ptr = 20;
x = *(*ptr);

32

28

24

20

13

42

Y

32

Casting between Pointer Types

- You can cast values between different types
- This includes between different pointer types!

- Doesn't change value of address
- Does change what you get when you dereference!

- Example:
int x = 47; // assume allocated at address 24
int* ptr = &x; // ptr == 24
char* ptr2 = (char*) ptr; // ptr2 == 24
int y = *ptr; // y == 47
char ¢ = *ptr2; // c = ??

32

28

13

42

477

20

32

Arrays

- Contiguous block of memory

- Random access by index
- Indices start at zero

- Declaring an array:

int arrayl[5]; // array of 5 ints named arrayl

char array2[47]; // array of 47 chars named array2

int array3[7][4]; // two dimensional array named array3

- Accessing an array:

int x = arrayl[2]; // array[k] isthe same as * (array+k)

- Arrays are pointers!
- The array variable stores the address of the first element in the array

Strings

- Strings are just arrays of characters
- aka strings are just pointers

- declared as type char*

- End of string is denoted by null byte \0

Pointer Arithmetic

char* ptr = &my char; // assume ptr == 32
int* ptr2 = (int*) ptr; // ptr2 == 32

ptr += 1; // ptr == 33

ptr2 += 1; // ptr2 == 36

- Location of ptr+k depends on the type of ptr
- adding 1 to a pointer p adds 1l*sizeof (*p) to the
address

- array[k] IS the same as * (array+k)

Exercise 2

What does x evaluate to in each of the following?
1.

int* ptr = 20;
int* x = ptr+2;

int* ptr = 20;
int x = *(ptr+2)

char* ptr = 20;
char* x = ptr+2;

char* ptr = 20;
int x = *((int¥*) (ptr + 4));

32

28

24

20

20

477

13

32

Structs

- Heterogeneous records, like objects
- Typical linked list declaration: typedef struct cell ({

int value;
struct cell *next;

} cell t;
. |cell t ¢c;
’ Usage' c.value = 42;
c.next = NULL;
- Usage with pointers: cell_t *p; p->next is an
p->value = 42; abbreviation for
p->next = NULL; (*p) .next

Exercise 3 intll

What does x evaluate to in each of the following?

typedef struct example ({

int z;
} example t;

1.

example t* p = 20;
example t ex = *p;
int x = ex.y;

2. example t* p = 20;
example t ex = *(p+l);
int x = ex.z;

* lexample t* p = 20;
int x = p->y;

4. example t* p = 20;
int x = (pt+l)->z;

32

28

24

20

105

477

13

32

	Slide 1: Lab 1: Introduction C
	Slide 2: C
	Slide 3: Variables
	Slide 4: Operations
	Slide 5: Control Flow
	Slide 6: Functions
	Slide 7: Main Functions
	Slide 8: Printing
	Slide 9: Compilation
	Slide 10: Running a Program
	Slide 11: Example C Types
	Slide 12: Review: Bytes and Memory
	Slide 13: Pointers
	Slide 14: Exercise
	Slide 15: Casting between Pointer Types
	Slide 16: Arrays
	Slide 17: Strings
	Slide 18: Pointer Arithmetic
	Slide 19: Exercise 2
	Slide 20: Structs
	Slide 21: Exercise 3

