
CS105 – Computer Systems Fall 2024

Assignment 5: Cache Lab
Due: Friday, October 11, 2024 at 4:59pm

For this assignment, you will emulate a direct-mapped cache at the user level. As usual, you should complete
this assignment with a partner; you may choose your partner for this assignment.

The starter code for this assignment is available both on the course website and on the course VM
(itbdcv-lnx04p.campus.pomona.edu). You may complete it either on your local machine or on the
course VM (the file path is /cs105/starters/cachelab.tar. Note that you will need to be connected to
the Pomona WiFi network or the Pomona VPN to access the VM.

As usual, you can unpack the starter code with the command tar xvf /cs105/starters/cachelab.tar

This will create a subdirectory named cachelab containing four files: eval.c, caching.h, caching.c,
and a Makefile that you should use to compile your code with the command “make”.

1 Background

Recall that caches are used as smaller, faster places to store copies of bytes from main memory. When a
process attempts to access a value in memory, it actually first checks the cache. If there is a copy of the
value from that address in the cache, it reads the value directly from cache. If the requested value is not in
the cache, it (1) reads the value from memory and (2) updates the cache.

2 Starter Code

The starter code for this assignment is comprised of three files:

• caching.h This is a header file that defines types, global variables, and function headers that are
shared between the two C files. Most critically, this file defines values NUM CACHELINES and DATA BLOCK LEN

(both set equal to 256) as well as types byte, bool, and cacheline t. This type stores all the data
from a single cacheline (the valid bit, the tag, and the data block). It is defined as follows:

typedef struct {

bool valid; // 1 bit valid (actually 8 bits, but we’ll pretend)

long tag; // 48 bit tag (actually 64 bits, but we’ll pretend)

byte datablock[DATA_BLOCK_LEN]; // 256 byte data blocks

} cacheline_t;

The simulated cache is declared in this file as a global variable of type cacheline t*, aka an array
of values of type cacheline_t. You should not make any changes to this file.

• eval.c This file contains most of the code needed to simulate and evaluate a direct-mapped cache.
You do not need to make changes to this file, although you may find in helpful to temporarily modify

5-1



the value MAX LEN defined at the top to a smaller value for debugging purposes. However, you need
to read and understand the contents of this file.

The main function in eval.c initializes the simulation. It then performs a series of matrix mul-
tiplications on one-dimensional matrices (aka vectors) of various lengths by calling the function
vector_multiplication. In all cases, the first vector a and the second vector b are immediately
sequential in memory (these addresses are explicitly defined inside the loop in the main function).

The simulation uses a wrapper function access_direct (also defined in file eval.c) to simulate
how computers access memory: it first checks whether a value is in the cache. If it is, it retrieves
the value from the cache. If it is not, it retrieves the value from memory, updates the cache, and the
returns the value. To do so, it uses various helper functions implemented in file caching.c.

• caching.c implements a series of four helper functions: parse_addr, is_in_direct_cache,
lookup_int_in_direct_cache, and update_direct_cache. Unfortunately for you, these helper
functions are not yet (correctly) implemented.

3 Simulating Caching

Your first task is to implement the four functions in caching.c:

1. parse_addr: This function should take an address of type void* and separated it into the tag, index,
and offset.

2. is_in_direct_cache: This function should return a boolean value: 1 if the value corresponding to
the specified tag/index/offset is currently stored in the cache (a cache hit) and 0 if it is not (a cache
miss).

3. lookup_int_in_direct_cache: This function should read an integer from the cache.

4. update_direct_cache: This function should update the cacheline at index with to contain the data
at addr (and the nearby bytes). Hint: the library function memcpy is your friend.

Getting started. I recommend that you try compiling (make) and running (./caching) the starter code
before you get started. Make a note of the values you get as answers; you’ll want to make sure you get the
same answers at the end! Note that all of the tests initially have a hit rate of 0 and a miss rate of 1; this is to
be expected, since you have not yet implemented the part of the simulation that uses the cache.

Hint: I strongly recommend reading caching.h before you start implementing things. This file contains
the definition of the type cacheline t and the declaration of the global variable direct cache. Both of
these will be useful.

Hint: I strongly recommend reading eval.c before you start implementing things. This file contains the
main function, and understanding what that function does will be helpful.

Hint: You can test your code against the gradescope autograder to make sure it is correct. Note that it is
possible to get slightly different cache miss/hit rates if depending on the machine you run on (why?), but the
numbers on the gradescope autograder are the same ones a correct solution will get on the course VM.

5-2



4 Analysis

After you have your simulation working, save the output to a textfile using the command

% ./caching > results.txt

Then create a new plaintext file called analysis.txt and answer the following four questions:

1. Explain (in detail) why the cache hit rate/cache miss rate you get for length 2 is correct.

2. Explain why you would expect the cache hit rate to go up as the vectors get longer.

3. Explain why the cache hit rate suddenly drops for large vectors.

4. What would be a better cache configuration to improve the hit rate for large vectors? You can’t make
your cache any bigger, you can only change the configuration.

Hint: I recommend waiting to complete this analysis until after we have talked about cache-aware optimiza-
tion in class.

Feedback

Create a file called feedback.txt that answers the following questions:

1. How long did each of you spend on this assignment?

2. Any comments on this assignment?

As always, how you answer these questions will not affect your grade, but whether you answer them will.

Submission

Submit the following four files on Gradescope: your source code caching.c, your evaluation results
results.txt, your analysis analysis.txt, and your feedback file feedback.txt. Make sure that you
submit all files together in one submission and that you tag your partner as a collaborator when you submit.
Also, be sure the names of all team members are clearly and prominently documented in the comment at the
top of caching.c.

5-3


